Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle.
نویسندگان
چکیده
This study was performed to assess the effects of short-term, extremely high-intensity intermittent exercise training on the GLUT-4 content of rat skeletal muscle. Three- to four-week-old male Sprague-Dawley rats with an initial body weight ranging from 45 to 55 g were used for this study. These rats were randomly assigned to an 8-day period of high-intensity intermittent exercise training (HIT), relatively high-intensity intermittent prolonged exercise training (RHT), or low-intensity prolonged exercise training (LIT). Age-matched sedentary rats were used as a control. In the HIT group, the rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 2, the next 4, and the last 2 days, respectively. Between exercise bouts, a 10-s pause was allowed. RHT consisted of five 17-min swimming bouts with a 3-min rest between bouts. During the first bout, the rat swam without weight, whereas during the following four bouts, the rat was attached to a weight equivalent to 4 and 5% of its body weight for the first 5 days and the following 3 days, respectively. Rats in the LIT group swam 6 h/day for 8 days in two 3-h bouts separated by 45 min of rest. In the first experiment, the HIT, LIT, and control rats were compared. GLUT-4 content in the epitrochlearis muscle in the HIT and LIT groups after training was significantly higher than that in the control rats by 83 and 91%, respectively. Furthermore, glucose transport activity, stimulated maximally by both insulin (2 mU/ml) (HIT: 48%, LIT: 75%) and contractions (25 10-s tetani) (HIT: 55%, LIT: 69%), was higher in the training groups than in the control rats. However, no significant differences in GLUT-4 content or in maximal glucose transport activity in response to both insulin and contractions were observed between the two training groups. The second experiment demonstrated that GLUT-4 content after HIT did not differ from that after RHT (66% higher in trained rats than in control). In conclusion, the present investigation demonstrated that 8 days of HIT lasting only 280 s elevated both GLUT-4 content and maximal glucose transport activity in rat skeletal muscle to a level similar to that attained after LIT, which has been considered a tool to increase GLUT-4 content maximally.
منابع مشابه
Changes in insulin-stimulated glucose transport and GLUT-4 protein in rat skeletal muscle after training.
After running training, which increased GLUT-4 protein content in rat skeletal muscle by <40% compared with control rats, the training effect on insulin-stimulated maximal glucose transport (insulin responsiveness) in skeletal muscle was short lived (24 h). A recent study reported that GLUT-4 protein content in rat epitrochlearis muscle increased dramatically ( approximately 2-fold) after swimm...
متن کاملThe Effect of 6 Weeks Resistance Training and High-Intensity Interval Training on Glut-4 Gene Expression of Diabetic Rats
Objective: GLUT4 glucose transporter content and glucose transport capacity are closely correlated in muscle. The purpose of current study was to evaluate the effect of 6 weeks of resistance training and High-Intensity Interval Training (HITT) on Glut-4 gene expression in type 2 diabetes mellitus (T2DM) by high fat diet and STZ. Materials and Methods: This study was done on 32 male Wistar in B...
متن کاملRapid reversal of adaptive increases in muscle GLUT-4 and glucose transport capacity after training cessation.
Previous studies have shown that when exercise is stopped there is a rapid reversal of the training-induced adaptive increase in muscle glucose transport capacity. Endurance exercise training brings about an increase in GLUT-4 in skeletal muscle. The primary purpose of this study was to determine whether the rapid reversal of the increase in maximally insulin-stimulated glucose transport after ...
متن کاملInvited review: Effects of acute exercise and exercise training on insulin resistance.
Insulin resistance of skeletal muscle glucose transport is a key defect in the development of impaired glucose tolerance and Type 2 diabetes. It is well established that both an acute bout of exercise and chronic endurance exercise training can have beneficial effects on insulin action in insulin-resistant states. This review summarizes the present state of knowledge regarding these effects in ...
متن کاملTHE EFFECTS OF INTERVAL TRAINING INTENSITY ON SKELETAL MUSCLE PGC-1Α IN TYPE2 DIABETIC MALE RATS
Background: The purpose of this study was to compare the effects of a 12 weeks interval training with high and moderate intensity on PGC-1α of skeletal muscle in type 2 diabetic male rats. Methods: 40 male rats were divided into two groups: High fat diet (HFD) (n=32) and standard diet (C) (n=8) for 10 weeks. After inducing type2 diabetes via STZ, 8 diabetic rats (D) and 8 rats in group C rats ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 90 6 شماره
صفحات -
تاریخ انتشار 2001